当前位置:首页 > 黑客教程 > 正文内容

十字相乘的 ***

访客3年前 (2022-03-02)黑客教程1150

十字相乘法是运用完全平方公式不能因式分解时需要优先考虑的又一种基本 *** ,其依据是根据由乘法恒等式——

(x+a)(x+b)=x^2+(a+b)x+ab

演变过来的公式——

x^2+(a+b)x+ab=(x+a)(x+b).

从某种意义上来说,十字相乘法也是运用公式法,它是针对二次项系数为1的二次三项式x^2+px+q进行分解的第三种基本 *** .运用这种 *** 的思路是寻找两个数ab,使得它们的积ab等于常数项q,和等于一次项系数p.一旦找到了这样的两个数,那么就可以把多项式x^2+px+q分解为(x+a)(x+b).

例如,分解x^2+10x+16因式时,由于它是二次三项式,所以我们首先想到的是能否运用完全平方公式?经过验证可知这种 *** 是不能的,因此考虑十字相乘法,寻找两个数,使得它们的积等于16,且和等于10.要寻找这样的两个数,我们一般只需要先考虑正整数就可以.

由于乘积等于16的两个正整数只有1和16,2和8,4和4这三组,所以接下来只需要验证哪一组的和等于10即可.显然,在这三组数中,只有2+8=10,所以2和8就是我们寻找的两个数.

因此,x^2+10x+16可分解为(x+2)(x+8).

为什么把这种因式分解的 *** 叫做十字相乘法呢?这是因为在寻找这样两个数时,为了方便与直观,我们一般通过画如下简易的交叉“十字”图,把二次项x^2分解为x乘以x,把常数项16分解为所有可能两个整数的相乘,然后再寻找和等于一次项系数10的一组.由于这个“十字图”的缘故才把这种因式分解的 *** 叫做十字相乘法.

例如,用十字相乘法分解x^2+7x-18因式时,通过画“十字图”可以较快地找到我们想找的两个数.

由于常数项是负数,所以分解为乘积的两个整数是一正、一负,验证一次项系数时要注意符号.经过几次尝试与验证,我们寻找的两个数是9和-2.

所以x^2+7x-18=(x+9)(x-2).

再如,因式分解:x^2-18x+56.

见到常数项56,我们马上想到的是“七八五十六”,由于一次项系数是负数,于是自然会想到乘积等于56的两数是-7和-8,.但是,-7与-8的和是-15,不等于一次项系数-18,告这一方案失败.

再对乘积等于56的两个数继续尝试,一定会找到-4和-14,满足乘积等于56,和等于-18,

所以x^2-18x+56=(x-4)(x-14).

显然,运用十字相乘法进行多项式x^2+px+q因式分解的关键是找到两个数ab,使得a+b=p,ab=q.而能否快速找到这两个数,虽然是“三分靠运气”,但大多还是靠实力,经过不断尝试总能成功的.

运用十字相乘法因式分解时需要注意以下几点:

(1)上述 *** 针对的是二次项系数为1的二次三项式,如果二次项系数不是1,其分解思路也是一样的.

比如,因式分解:3x^2-7x-6.

把3x^2分解为x与3x的积,-6分解为1与-6,-1与6,2与-3,-2与3,然后验证交叉乘积的和是否等于一次项-7x?

易知,在这些方案中,只有x·2+3x·(-3)=-7x

然后把同行的x-3相加,得(x-3),3x与2相加,得(3x+2),再把(x-3)与(3x+2)相乘即可.即:

3x^2-7x-6=(x-3)(3x+2).

(2)二次项带负号“-”时,先提取负号“-”再分解.

例如,因式分解:-x^2+3x-2.

解:原式=-(x^2-3x+2)

=-(x-1)(x-2).

(3)如果多项式有公因式仍然需要先提取.

例如,分解因式:3ax^3-39ax^2x-42ax

解:原式=3ax(x^2-13x-14)

=3ax(x-14)(x+1).

(4)别忘了完全平方公式.

对于二次三项式的分解因式,不要因为有了十字相乘法而忘了完全平方公式.

例如,分解因式:x^2-6x+9.

解析:该多项式满足完全平方公式条件,可用公式法直接得到:

原式=(x-3)^2.

如果用十字相乘法,则容易写成(x-3)(x-3),此时应再化为(x-3)^2,否则就不够完美了.

(5)要有整体思想的意识.

例如,因式分解:(a-b)^2+5(a-b)-50.

解析:把(a-b)作为整体,则易得:

原式=(a-b+10)(a-b-5).

(6)双字母的二次三项式仍可运用十字相乘法.

例如,分解因式:x^2-3xy-4y^2.

解析:视y为1,分解x^2-3x-4=(x-4)(x+1),然后将因式中的-4,1作为原式分解因式中y的系数,得:

原式=(x-4y)(x+y).

(7)分解后因式要计算、化简与整理,之后能继续分解的要继续分解.

例如,分解因式:(2x+3)^2-12(2x+3)+35.

解析:把2x+3作为整体,用十字相乘法分解后会出现2x+3与35分解出来的数相加减,此时需要计算化简,整理后还要看看能否继续分解?

原式=[(2x+3)-5][(2x+3)-7]

=(2x-2)(2x-4)

=4(x-1)(x-2).

(8)运用十字相乘法分解后仍然需要再考虑每个因式是否能继续分解?

例如,分解因式:x^4+5x^2-6.

解析:把x^2作为整体,原式可视为关于x^2的二次三项式,运用十字相乘法分解后,每个因式都是二次式,应再考虑能否继续分解?

原式=(x^2)^2+5x^2-6

=(x^2-1)(x^2+6)

=(x+1)(x-1)(x^2+6).

(9)有时需要先计算再分解.

例如,分解因式:(x-1)^2-3(x+1)-4.

解析:如果不先计算、化简,显然是无法分解的.因此,只能是先计算,再看看能用什么 *** 分解?

原式= x^2-2x+1-3x-3-4

= x^2-5x-6

=(x-6)(x+1).

练习:把下列多项式因式分解:

(1)x^2-12x+32.

(2)4m3+12mn+8mn^2.

(3)x^4+2x^2-3.

(4)(x-1) ^2+4(1-x)+3.

(5)a^4-5a^2+4.

(6)(a+1)^2-4(a-1)-8.

(未完待续)

扫描二维码推送至手机访问。

版权声明:本文由黑客技术发布,如需转载请注明出处。

本文链接:http://w-123.com/76505.html

标签: ***

“十字相乘的 *** ” 的相关文章

区块链公司 Ronin 被黑 6.15亿美元加密货币被盗

视频链接:https://n.sinaimg.cn/sinakd20211219s/138/w600h338/20211219/9907-45d93401a89f40f888b22dc250f73fab.jpg 区块链项目Ronin发布消息称,黑客从该项目窃取价值6.15亿美元的加密货币。按照R...

美政府悬赏 1000 万美元来寻找能够识别或定位俄黑客组织 Sandworm 成员的信息

据TechCrunch报道,美国政府通过悬赏1000万美元来寻找能够识别或定位黑客组织Sandworm成员的信息,从而加大了对六名俄罗斯情报官员的追捕力度。黑客组织Sandworm的成员为俄罗斯军事情报部门GRU的一个部门工作–以对关键基础设施,包括食品供应和能源部门发起破坏性和毁灭性的网络攻击而闻...

西班牙政府证实首相及防长手机被通过“飞马”间谍软件窃听

法新社消息,西班牙政府2日表示,该国首相桑切斯和国防部长罗伯斯的手机在一次“非法的、外部的 ”干预中被通过“飞马”间谍软件窃听。报道还称,西班牙首相府、议会关系与民主记忆大臣费利克斯·博拉尼奥斯·加西亚也证实说,“这不是推测,是非常严重的事实,希望司法部门进行调查。” 法新社报道截图 去年7月,这...

FBI 警告勒索软件攻击食品和农业公司威胁粮食生产

美国联邦调查局警告食品和农业公司,要做好准备,防止勒索软件操作者在播种和收获季节攻击农业实体。联邦调查局的警告指出,以前在这些季节对6个粮食合作社的勒索软件攻击是在2021年秋收期间进行的,2022年初的两次攻击可能通过破坏种子和化肥的供应而影响种植季节。 “网络犯罪分子可能将农业合作社视为有利可...

黑客正利用虚假 Windows 11 升级引诱受害者上钩

Bleeping Computer 报道称,已有黑客在利用伪造的 Windows 11 升级安装包,来引诱毫无戒心的受害者上钩。为了将戏演得更真一些,当前正在活跃的恶意软件活动甚至会利用中毒后的搜索结果,来推送一个模仿微软 Windows 11 促销页面的网站。若不幸入套,或被恶意软件窃取浏览器数据...

公民实验室:英政府内部网络曾遭“飞马”间谍软件攻击

加拿大多伦多大学下属“公民实验室”(Citizen Lab)的研究人员当地时间周一发文称,该实验室的核心任务是对民间社会的数字威胁进行研究。在调查雇佣军间谍软件的过程中,他们偶尔会观察到一些案例,怀疑政府正在使用间谍软件对其他政府进行国际间谍活动。这些案件绝大多数都不属于他们的范围和任务。然而,在某...

评论列表

森槿野梦
3年前 (2022-07-21)

十字相乘法,寻找两个数,使得它们的积等于16,且和等于10.要寻找这样的两个数,我们一般只需要先考虑正整数就可以.由于乘积等于16的两个正整数只有1和16,2和8

夙世绿邪
3年前 (2022-07-21)

解为x乘以x,把常数项16分解为所有可能两个整数的相乘,然后再寻找和等于一次项系数10的一组.由于这个“十字图”的缘故才把这种因式分解的方法叫做十字相乘法.例如,用十字相乘法分解x^2+7x

美咩夏棠
3年前 (2022-07-21)

告这一方案失败.再对乘积等于56的两个数继续尝试,一定会找到-4和-14,满足乘积等于56,和等于-18,所以x^2-18x+56=(x-4)(x-14).显然,运用十字相乘法进

晴枙淤浪
3年前 (2022-07-21)

)上述方法针对的是二次项系数为1的二次三项式,如果二次项系数不是1,其分解思路也是一样的.比如,因式分解:3x^2-7x-6.把3x^2分解为x与3x的积,-6分解为1与-6,-1与6,2与-3,-2与3,然后验证交叉乘积的和是否等于一次项-7x?易知,在这些方案中,只有

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。