当前位置:首页 > 网络黑客 > 正文内容

cnn是什么(CNN通俗解析)

访客3年前 (2022-01-01)网络黑客957

cnn是什么(CNN通俗解析)

CNN基础知识介绍及TensorFlow具体实现,对于初学者或者求职者而言是一份不可多得的资料。


定义:

简而言之,卷积神经 *** (Convolutional Neural Networks)是一种深度学习模型或类似于人工神经 *** 的多层感知器,常用来分析视觉图像。卷积神经 *** 的创始人是着名的计算机科学家Yann LeCun,目前在Facebook工作,他是之一个通过卷积神经 *** 在MNIST数据集上解决手写数字问题的人。

Yann LeCunn

卷积神经 *** 的出现是受到了生物处理过程的启发,因为神经元之间的连接模式类似于动物的视觉皮层组织。

人脑的视觉结构

个体皮层神经元仅在被称为感受野的视野受限区域中对 *** 作出反应,不同神经元的感受野部分重叠,使得它们能够覆盖整个视野。

计算机视觉与人类视觉

正如上图所示,我们在谈论任何类型的神经 *** 时,都不可能不提及一点神经科学以及人体(特别是大脑)及其功能相关的知识,这些知识成为创建各种深度学习模型的主要灵感的来源。

卷积神经 *** 的架构:


卷积神经 *** 架构

如上图所示,卷积神经 *** 架构与常规人工神经 *** 架构非常相似,特别是在 *** 的最后一层,即全连接。此外,还注意到卷积神经 *** 能够接受多个特征图作为输入,而不是向量。

下面让我们探索构成卷积神经 *** 的基本构件及相关的数学运算过程,并根据在训练过程中学到的特征和属性对图像进行可视化和分类。

输入层|Input Layer:

输入层主要是n×m×3 RGB图像,这不同于人工神经 *** ,人工神经 *** 的输入是n×1维的矢量。

RGB图像

卷积层|Convolution Layer:

在卷积层中,计算输入图像的区域和滤波器的权重矩阵之间的点积,并将其结果作为该层的输出。滤波器将滑过整个图像,重复相同的点积运算。这里注意两件事:

滤波器必须具有与输入图像相同数量的通道;

*** 越深,使用的滤波器就越多;拥有的滤波器越多,获得的边缘和特征检测就越多;




前向卷积运算

卷积层输出的尺寸:

输出宽度:


输出高度:


其中:

W :输入图像的宽度

H :输入图像的高度

Fw :滤波器或内核的宽度

Fh :滤波器的高度

P :填充

S :移动步幅

卷积层输出的通道数等于卷积操作期间使用的滤波器的个数。

为什么选择卷积?

有时候可能会问自己,为什么要首先使用卷积操作?为什么不从一开始就展开输入图像矩阵?在这里给出答案,如果这样做,我们最终会得到大量需要训练的参数,而且大多数人都没有能够以最快的方式解决计算成本高昂任务的能力。此外,由于卷积神经 *** 具有的参数会更少,因此就可以避免出现过拟合现象。

池化层|Pooling Layer:

目前,有两种广泛使用的池化操作——平均池化(average pooling)和更大池化(max pooling),其中更大池化是两者中使用最多的一个操作,其效果一般要优于平均池化。池化层用于在卷积神经 *** 上减小特征空间维度,但不会减小深度。当使用更大池化层时,采用输入区域的更大数量,而当使用平均池化时,采用输入区域的平均值。


更大池化

为什么要池化?

池化层的核心目标之一是提供空间方差,这意味着你或机器将能够将对象识别出来,即使它的外观以某种方式发生改变,更多关于池化层的内容可以查看Yann LeCunn的文章。

非线性层|Non-linearity Layer:

在非线性层中,一般使用ReLU激活函数,而不是使用传统的Sigmoid或Tan-H激活函数。对于输入图像中的每个负值,ReLU激活函数都返回0值,而对于输入图像中的每个正值,它返回相同的值(有关激活函数的更深入说明,请查看这篇文章)。

ReLU激活函数

全连接层}Fully Connected Layer:

在全连接层中,我们将最后一个卷积层的输出展平,并将当前层的每个节点与下一层的另一个节点连接起来。全连接层只是人工神经 *** 的另一种说法,如下图所示。全连接层中的操作与一般的人工神经 *** 中的操作完全相同:


扫描二维码推送至手机访问。

版权声明:本文由黑客技术发布,如需转载请注明出处。

本文链接:https://w-123.com/104270.html

“cnn是什么(CNN通俗解析)” 的相关文章

Cloudflare 成功阻止针对其客户最大规模的 HTTPS DDoS 攻击

Cloudflare 透露公司已经阻止了来自多个国家的大规模 HTTPS DDoS 攻击。该公司表示,该僵尸网络每秒发出 1530 万个请求(rps),使其成为针对其客户的最大 HTTPS DDoS 攻击。 Cloudflare 表示本次攻击的目标是针对一家 The Crypto Launchp...

黑客用新 Rootkit 攻击银行网络从 ATM 机上窃取资金

Hackernews 编译,转载请注明出处: 据观察,一个利益熏心的黑客正在部署一个全新的针对 Oracle Solaris 系统的 rootkit,目的是ATM机网络,并在不同银行使用伪造的卡进行未经授权的现金提款。 威胁情报和事件应急公司 Mandiant 正在追踪名为 UNC2891的组织,...

美将 Ronin 网络 6.25 亿美元加密货币被盗事件归咎于朝鲜黑客组织

据Vice的报道,美财政部将Ronin网络6.25亿美元加密货币被盗事件归咎于朝鲜黑客组织。据悉,该网络是支持Axie Infinity游戏的区块链。当地时间周四,财政部更新了制裁措施,其中包括收到资金的钱包地址并将其归于Lazarus集团。 开发商集团Sky Mavis拥有的Ronin网络在关于...

育碧通报网络安全事件 全公司已采取重置密码的预防措施

在周四的一份网络安全公告中,育碧(Ubisoft)证实该公司在上周遭遇了一起“网络安全事件”。尽管攻击尝试似乎未能造成破坏,但出于安全方面的考虑,育碧还是采取了全公司范围内的密码重置措施,以防发生其它意外。在此期间,育碧暂停了部分服务,但坚称没有玩家数据受到损害。截止发稿时,该公司旗下所有游戏和服...

红十字国际委员会称“国家支持的”黑客利用未修复的漏洞发起攻击

据TechCrunch报道,红十字国际委员会(ICRC)最近遭到网络攻击,超过51.5万名“高危人群”的数据被泄露,这很可能是国家支持的黑客所为。在周三发布的更新中,红十字国际委员会证实,最初的入侵可以追溯到2021年11月9日,即在1月18日攻击被披露之前的两个月,并补充说,其分析表明,入侵是对其...

谷歌搜索 2021 Webspam 报告:过滤垃圾网站数量是 2020 年的六倍

由周四发布的“网络垃圾”(Webspam)报告可知,谷歌搜索在 2021 年过滤的垃圾网站数量、竟是 2020 年的六倍。据悉,作为 Alphabet 旗下子公司,Google 有一套名为 SpamBrian 的人工智能垃圾过滤系统,并且可在超过 99% 情况下实现“不受垃圾所困扰”(spam-fr...

评论列表

嘻友岛徒
3年前 (2022-06-01)

由于卷积神经网络具有的参数会更少,因此就可以避免出现过拟合现象。池化层|Pooling Layer:目前,有两种广泛使用的池化操作——平均池化(average po

惑心忿咬
3年前 (2022-06-01)

会减小深度。当使用最大池化层时,采用输入区域的最大数量,而当使用平均池化时,采用输入区域的平均值。最大池化为什么要池化?池化层的核心目标之一是提供空间方差,这意味着你或机器将能够将对象识别出来,即使它的外观以某种方式发生改变,更多关于池化层的内容

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。